
Drawing Text With ATSUI
Session 202

Drawing Text With ATSUI

Xavier Legros
Mac OS X Evangelist

Apple Worldwide Developer Relations

Overview
•Introduction to ATSUI

• Features
• Concepts

•New API For Jaguar
•Dos and Don’ts

What Is ATSUI?
•Mac OS X basic text drawing API

• Only way to draw Unicode and the best
way to get Quartz for Carbon apps

ATSUI Features
•Full Unicode 3.2 Layout Support

• Truly Multilingual—one set of API to support
all languages

• Combining characters and complex scripts
• Languages not covered by WorldScript I or II
• Replaces WorldScript I on Mac OS X

•Automatic Font Substitution

More ATSUI Features
•Advanced typography

• Kerning, optical alignment, variation fonts,
ligatures, glyph alternatives, baseline adjust, …

• Vertical text layout (CJK)
•Editing

• Highlighting, hit testing, cursor movement
•Quartz Drawing

ATSUI and Quartz
•Fully integrated with Quartz
•Full Quartz anti-aliasing
•Respects settings in the CGContext

• Color Space
• Scaling

•Uses Quartz text rendering attributes

ATS
(Apple Type Services)

ATS
(Apple Type Services)

Application Services (Carbon)Application Services (Carbon)

ATSUI Throughout Mac OS X
Carbon AppCarbon App FinderFinder Cocoa AppCocoa App

Carbon HI ToolboxCarbon HI Toolbox AppKit (Cocoa)AppKit (Cocoa)

ATSUI
(Apple Type Services for Unicode Imaging)

ATSUI
(Apple Type Services for Unicode Imaging)

QuickDrawQuickDraw Core Graphics (Quartz)Core Graphics (Quartz)

When Should I Use
ATSUI Directly?

•Fine control
• Glyph positions, text at an angle or on a path,
line positioning

•Text features
• Vertical, justification control, optical alignment, …

•Writing your own text editing engine
• Can not use MLTE but need Unicode or
ATSUI features

ATSUI Concepts
•ATSUStyle Objects
•ATSUTextLayout Objects

How Do the Objects Fit In?
Mac OS X is a super-modern operating system that combines the power and
stability of UNIX with the simplicity and elegance of the Macintosh.

Featuring the stunning new user interface called Aqua. Mac OS X makes
everything on the Mac even more intuitive for new users, while providing
powerful, customizable tools for professionals.

��������	
���
	�����������������
����� �!�"�#$%��&'()*�+,-�.-/01��
234567895�:�-;,<�=�>�"�8��?��@�=
A�)*�+,-�BCDEF&��>�3�8�GHI

ATSUTextLayouts

Unicode
Text Buffer

ATSUStyle
Styled Text

ATSUStyle Objects
•Opaque object that represents a collection
of stylistic attributes

•Never tied to a specific layout or run of text

What Can Be Stored
in ATSUStyle?

•Font, size, color, vertical, with- and cross-stream
shift, kern control, optical, hanging, …

•Font features (defined by font)
• Ligatures, swashes, variant glyphs, …

•Font variations
• Continuously variable weight, width, …

ATSUTextLayout Objects
•Ties Unicode text buffer with runs of ATSUStyle
•Keeps track of soft line breaks and tab stops
•Caches information about the text
•Customized through the use of Layout
and Line controls

Layout and Line Controls
•Allow the control of line width, rotation,
justification, flush, baseline, …

•Can be applied to an entire ATSUTextLayout
or an individual line

Demo

New ATSUI Features

Tom Madden
ATSUI Tamer

New Features
•Batch line breaking
•Tab support
•Direct access
•Style flattening
•Variant glyphs
•Font Fallbacks Objects
•Thread safety
•Text measurement

Batch Line Breaking
•Paragraph based, like ATSUI
•Can reduce line breaking time by up to 50%
•Less code than ATSUBreakLine

Old: ATSUBreakLine Loop
ItemCount numSoftBreaks;

UniCharArrayOffset currentStart = 0;

UniCharArrayOffset currentEnd = textLength;

do {

ATSUBreakLine(
layout, currentStart, lineBreakWidth,
true, ¤tEnd);

currentStart = currentEnd;

} while (currentEnd < textLength);

ATSUGetSoftLineBreaks(layout,
kATSUFromTextBeginning, kATSUToTextEnd, 0,
NULL, &numSoftBreaks);

New: ATSUBatchBreakLines
ATSUBatchBreakLines(layout,
kATSUFromTextBeginning, kATSUToTextEnd,
lineBreakWidth, &numSoftBreaks);

•Can be used only if the maximum line break
width for all lines is the same

Tab Support
•Tab stops can now be set in an
ATSUTextLayout object

• ATSUSetTabArray
• ATSUGetTabArray

•Simplifies the task of implementing rulers

Tab Support—New Data Types
•ATSUTab

•ATSUTabType
• Left, right, and center tabs

struct ATSUTab {
 ATSUTextMeasurement tabPosition;
 ATSUTabType tabType;
};

ATSUI DirectAccess
•What is it?
•What can it be used for?
•How do I use it?

DirectAccess: What Is It?
•New set of API

• Direct access to glyph data during the
layout process

•New Callback Definition
• Control over ATSUI’s internal layout process

DirectAccess:
What Can It Be Used For?

•Fine control over layout metrics
•Override ATSUI’s internal layout operations
•Glyph replacement

Using DirectAccess
•Install the operation override callback for
the operations you wish to override

• ATSUSetLayoutControls with the
kATSULayoutOperationOverrideTag tag

•Call ATSUI normally to measure and draw
•Callback invoked when re-layout is needed

ATSUI’s Layout Operations
•Linguistic

• Bi-directional level calculation
• Glyph Morphing

• Ligatures, contextual forms, etc.

•Kerning
•Tracking
•Baselines
•Justification

Which Operations
Can I Override?

•Justification
•Morph
•Kerning
•Baseline
•Tracking
•Post Layout

• To perform adjustment after ATSUI
has finished all operations

Callback Implementation
OSStatus(*ATSUDirectLayoutOperationOverrideProcPtr)(
 ATSULayoutOperationSelector iCurrentOperation,
ATSULineRef iLineRef,
UInt32 iRefCon,
void *iOperationCallbackParameterPtr,
ATSULayoutOperationCallbackStatus *oCallbackStatus);

•Determine reason using iCurrentOperation
•Use iLineRef to get glyph data
•Tweak the glyph data
•Return call status in oCallbackStatus

How Do I Get the Glyph Data
From Inside the Callback?

•ATSUDirectGetLayoutDataArrayPtrFromLineRef
•Returns a direct pointer
•Fast
•Dispose of the data pointer by calling
ATSUDirectReleaseLayoutDataArrayPtr

Can I Get Glyph Data
Outside of the Callback?

•ATSUDirectGetLayoutDataArrayPtrFromTextLayout
•Returns a copy of the data
•Dispose of the data pointer by calling
ATSUDirectReleaseLayoutDataArrayPtr

A b
Baseline

2

Advance Delta

Real Position

Baseline Delta

What Data Makes
an ATSUI Glyph?

What Data Makes
an ATSUI Glyph?

•ATSLayoutRecord
struct ATSLayoutRecord {

ATSGlyphRef glyphID;

ATSGlyphInfoFlags flags;

ByteCount originalOffset;

Fixed realPos;

};

•Baseline Delta (Fixed)
•Advance Delta (Fixed)
•Style Index (UInt16)
•Device Delta (SInt16)

Demo
DirectAccess

Style Flattening
•Flatten style run data to a stream
•Reconstruct styles from a stream
•Standard Pasteboard format

• ‘ustl’ version 2.0
• Used by MLTE
• Understood by Cocoa Applications
• All structures defined publicly

Flattening Styles
•ATSUFlattenStyleRunsToStream
•Used to flatten multiple style runs into a stream
of data

•Pass in an array of ATSUStyle objects, an array of
run lengths for the associated ATSUStyle objects,
and an allocated buffer

Reconstructing Style Runs
•ATSUUnflattenStyleRunsFromStream
•Returns the style objects and run information
in two separate arrays

•Caller is responsible for disposing of the
ATSUStyle objects created by this call

•Caller is responsible for matching up the style
runs to the associated Unicode text

• Usually exported to the pasteboard
as ‘utxt’ data

Variant Glyphs
•Display glyphs that do not have an explicit
Unicode character to glyph mapping

• Variations of a glyph that does have
a mapping

• Access to characters in the fonts that
otherwise would not be accessible

Variant Glyphs

Variant Glyph Support
•New ATSUStyle tag

• kATSUGlyphSelectorTag
•New Attribute Structure

• ATSUGlyphSelector
•Choose variant glyph by font specific glyph or CID
•Get variant glyph information from input
method via TSM

• kEventParamTextInputGlyphInfoArray text
input event parameter

Font Fallback Objects
•Specifies a search order for font substitution

• Reference to a list of ATSUFontIDs
•Attached to an ATSUTextLayout object

• kATSULineFontFallbacksTag
•Safer than relying on the global font fallback list

Font Fallback Objects
•New API to create, destroy, and manage font
fallback objects

• ATSUCreateFontFallbacks
• ATSUDisposeFontFallbacks
• ATSUSetObjFontFallbacks
• ATSUGetObjFontFallbacks

•Font fallback objects should be shared if possible

ATSUI’s Thread Safety
•ATSUI objects are thread safe
•ATSUI APIs are thread safe

• Be careful with global font fallback lists
set by ATSUSetFontFallbacks

Text Measurement
•Review

• Typographic vs. Image Bounds
• Three APIs to measure

•New options

Publish or Perish

Image Bounds

Typographic Bounds

Apple

Text Measurement:
Typographic vs. Image Bounds

Text Measurement:
ATSUGetGlyphBounds

•Typographic bounds of the final laid out line
• Returns bounding trapezoids
• Aligned on fractional pixel boundaries

•Useful when laying out line after line of text
• Prevents collisions with ascenders
and descenders

Text Measurement:
ATSUMeasureTextImage

•Image bounds of the final laid out line
• Returns bounding rectangle
• Aligned on integer, whole pixel boundaries

•Useful for figuring out the exact area in which
ATSUI will draw

Text Measurement:
ATSUMeasureText

•Typographic bounds of a line prior to final layout
• Returns bounding rectangle based on ascent,
descent, start point, and end point

• Aligned on fractional pixel boundaries
• Ignores any previously set line attributes such
as rotation, flushness, justification, etc.

•Will likely force an extra layout operation
•Useful for calculating your own line breaking

Text Measurement: New
Ascent and Descent Options

•Ascent Tag: kATSULineAscentTag
• Gets or sets the maximum typographical ascent of all
fonts used on a line or layout

•Descent + Leading Tag: kATSULineDescentTag
• Gets or sets the maximum typographical descent +
leading of all fonts used on a line or layout

•Use with ATSUGetLineControl or
ATSUGetLayoutControl

•The most efficient way to get the ascent or
descent + leading on Jaguar

ATSUI
Dos and Don’ts

Aaron Haney

Layouts
•Don’t create a layout for each word,
style run, or line

•Do create a layout for each paragraph

Layouts (Cont.)
•Don’t throw away text layouts when text
is altered

•Do use ATSUSetTextPointerLocation,
ATSUTextDeleted, and ATSUTextInserted

vs

Example of flowing text around complex shapes:

Layouts (Cont.)
•Don’t use multiple layouts to flow text
around complex shapes

•Do use multiple lines and vary the line width

Line Breaking
•Don’t loop over ATSUBreakLine unless it is
absolutely necessary

•Do use the new ATSUBatchBreakLines call

Line Breaking (Cont.)
•Don’t set soft line breaks manually
unless it is absolutely necessary

•Do pass true as the iUseAsSoftLineBreak
parameter to ATSUBreakLine whenever possible

Styles
•Don’t recreate style objects for each draw
•Do keep style objects around as long as they
might be needed

CG Drawing
•Don’t create and destroy the CGContext at
each draw unless it is absolutely necessary

•Do retain the same CGContext until all
drawing is completed

CG Drawing (Cont.)
•Don’t use CreateCGContextForPort
to do CG drawing

•Do use QDBeginCGContext and
QDEndCGContext

Measuring
•Don’t use ATSUMeasureText to get the ascent
and descent of a line

•Do use ATSUGetGlyphBounds; Or, on Jaguar
or later, use kATSULineAscentTag and
kATSULineDescentTag

Font Fallbacks
•Don’t use global font fallbacks
•Do use the per-layout font fallback objects
(ATSUFontFallbacks)

Font Fallbacks (Cont.)
•Don’t throw away ATSUFontFallbacks objects
•Do keep them around as long as possible, and
even share them between layouts

Object Sharing
•Don’t share ATSUTextLayout objects between
threads, unless running under Jaguar

•Do share ATSUStyle and ATSUFontFallback
objects between threads

Summary

Xavier Legros

Summary
•ATSUI brings developers:

• Advanced Unicode text drawing
• Advanced Typography
• Support for new languages

Documentation
•Apple Type Services for Unicode
Imaging Reference

• http://developer.apple.com/techpubs/macosx/
 Carbon/text/ATSUI/atsui.html

• Covers ATSUI 1.2
•Updated documentation for ATSUI 2.4

• On web site in early summer
• HTML and PDF

Roadmap
Room C

Tue., 9:00am
Room C

Tue., 9:00am

200 Making Your Application
Unicode Savvy

Room C
Tue., 10:30am

Room C
Tue., 10:30am

201 Font Manager

Room A2
Thurs., 9:00am

Room A2
Thurs., 9:00am

208 MLTE: A Unicode Text Engine

Room A2
Fri., 10:30am
Room A2

Fri., 10:30am

010 Going International
With Mac OS X

Who to Contact
Xavier Legros
Mac OS X Evangelist
Apple Worldwide Developer Relations
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

Xavier Legros
Mac OS X Evangelist
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html

